Characterization of deposited carbon layers in Tore Supra

M. Richou, C. Martin, P. Roubin Laboratoire PIIM, Université de Provence, Marseille, France

C. Brosset, B. Pégourié Association EURATOM-CEA, CE Cadarache, France

aims

• fuel balance in Tore Supra, contents in D

• multi-scale analysis of structure (atomic, nano, meso and macro) consequences on transport and diffusion properties

Tore Supra chamber

carbon - carbon composite (CFC): pyrolytic matrix - carbon fiber

$\begin{array}{c|c} T < 450 \ ^{\circ}\text{C} \\ \Phi(\text{D}^{+}) = 10^{17} \ \text{cm}^{-2} \ \text{s}^{-1} \\ \text{E}_{\text{i}} = 500 \ \text{eV} \end{array}$

limiter deposits: LIM

neutraliser deposits: NTR

 $T \sim 900 \text{ °C (up to 1200 °C)} \\ \Phi(D^+) = 10^{16} \text{ - } 10^{17} \text{ cm}^{-2} \text{ s}^{-1} \\ E_i = 100 \text{ eV}$

vertical outboard limiter: VOL

SEM: NTR deposits

fractal dimension: 2.15

<u>SEM</u>: LIM deposits

 $1 \ \mu m$

¹⁰⁰ nm

outboard limiter (VOL)

X-ray diffraction

	2θ /°	d/Å	δ(2θ)	L _c / nm
CFC	26.54	3.36	0.23	74
pyrolytic	26.21	3.40	0.47	36
LIM	26.10	3.41	1.58	11
NTR	25.86	3.45	2.01	8

 \Rightarrow turbostratic graphite

porosity analysis: adsorption isotherm volumetry

⇒ adsorption capacity much larger than CFC (x 30 - 100) surface specific area 190 m² g⁻¹

 \Rightarrow evidence for slit-shape porosity (graphite-like)

CFC: ~ surface NTR: ~ volume

 \Rightarrow sub-nano scale: high disorder and pores of every size

comparison NTR / LIM

methane isotherms

\Rightarrow higher disorder for LIM than for NTR

adsorbants of various sizes

methane isotherms

AC: super-micropores \geq 1.4 nm

NTR: ultra-micropores ≤ 1 nm

pore-size distribution (Stoeckli method)

<u>Dubinin</u>: $V_{ads} / V_0 = exp(-A^2 / \beta^2 E_0^2)$

Stoeckli: $V_{ads} / V_0 = [1 + (A/L_0E)^3/a]^{-m}$ PSD: dV/dL $V_{ads} / V_0 = \int PSD \, dL$

linear fit:

C₆ H₆: E₀ = 19.9 kJ mol⁻¹; L₀ = 1.3 nm N₂: E = 4.7 kJ mol⁻¹; $\beta = 0.24$

NTR: $E_0 = 23.7 \text{ kJ mol}^{-1}$; $L_0 = 0.9 \text{ nm}$

AC: $L_m = 1.3 - 1.4 \text{ nm}$ ntr: $L_m = 0.9 \text{ nm}$

Raman microspectroscopy

• **G** <u>G</u>raphite-like band \leftrightarrow trivalent C atoms (sp²)

• **D** <u>D</u>isordered-like band (sp²) *or* mixed bonding sp^2 / sp^3

spectral decomposition

	G		D										
	Р	W	Ι	Р	W	Ι	Р	W	Ι	Р	W	Ι	I _D /I _G
HOPG	1582	14	100	-	-	0	-	-	0	-	-	0	-
pyrolytic	1584	22	82	1353	41	17	-	-	0	1625	8	1	0.2
CEC	1584	25	46	1351	52	45	-	-	0	1619	35	9	1.0
	1584	18	64	1353	52	30	-	-	0	1622	28	6	0.5
NTR	1598	65	24	1350	87	55	1524	124	16	1226	186	5	2.3
VOL	1597	70	13	1347	196	58	1545	157	25	1145	253	5	4.5
VOL	1592	<mark>52</mark>	32	1357	74	5 7	1534	78	12	-	-	0	1.8
LIM	1595	88	16	1350	110	32	1505	179	23	1244	414	29	2.1
LIM	1586	105	17	1354	130	25	1487	105	14	1248	472	44	1.5
LIM	1576	123	24	1354	143	29	1478	150	26	1238	312	21	1.2

⇒ G and D bands: signature of a non crystalline graphite-like carbon
⇒ G and D widths: highly disordered carbon (L_{//} = 1 - 3 nm)
⇒ additional band at 1500 cm⁻¹: more sp³ defects for LIM than NTR

main results and perpectives

deposit properties

low D / C ratio(RMN, NRA, FTIR)10 %for cold deposits1 %for hot deposits

local graphite-like structure (XANES, Raman, X-ray diffraction, TEM)

highly disordered $\leftrightarrow D^+$ bombardment

open porosity: surface: $200 \text{ m}^2 \text{ g}^{-1}$ volume: $0.05 \text{ cm}^3 \text{ g}^{-1}$ volume: 10 %

\Rightarrow <u>dynamics</u>

input parameters for a multiscale analysis of the diffusion of H, H₂ inside the wall

- financial support: Euratom-CEA association
- collaborations
 - Ph Parent, C. Laffon (LURE Orsay) XANES
 Ph Colomban, G. Sagon (LADIR Thiais) Raman
 F. Ziarelli, S. Caldarelli (TRACES Marseille) NMR
 W. Saikaly, CP2M Marseille TEM
 service commun St Charles Marseille SEM
 J.-P. Astier CRMCN Marseille X-ray diff.