Fabrication and High-Heat-Flux-Testing of W/Cu-divertor modules with a graded interface

Research-project of the "Friedrich-Schiedelstiftung für Energietechnik"

Actively cooled divertor test modules

W macrobrush mock-up

- coating of W-tiles with OFHC-Cu
- e-beam welding to CuCrZr heat sink

1000 cycles @ 18 MWm⁻² without failure

HHF test

PS-W mock-up

vacuum plasma spraying of tungsten

HHF test 1000 cycles @ 5.5 MWm⁻²

without failure 430 cycles @ 7.6 MWm⁻² increasing T_{surf}

W monoblock (monolytic type)

- drilling of W-La₂0₃ monoliths (d = 4 mm)
- casting with OFHC-Cu
- HIPing (700 °C, 3 hrs.)

HHF test

1000 cycles @ 18 MWm⁻² without failure

Flat Tile Concept with and w/o W/Cu-Gradient

Reduction of residual and thermal stresses at the interface $(\Delta \alpha_{W/Cu} \approx 12 \times 10^6 \text{ K}^{-1}) \Rightarrow$ reduced delamination effects

 \Rightarrow INCREASE OF LIFETIME

Fabrication methods for W/Cu-FGMs

Investigated methods:

- Vacuum Plasma Spraying
- Water Stabilized Plasma Spraying
- Direct Laser Deposition

Other methods:

Electrochemical infiltration, Sintering, Spark Plasma Sintering,...

Vacuum Plasma Sprayed W/Cu-Composites

Parameters • 2 powder feeders • Transferred Arc Cleaning

Powder W [< 10 μm] + Cu [40 - 50 μm]

W-Cu26
 W-Cu43
 W-Cu52
 W-Cu78

Finite Element Simulations

Parameters

- optimal bonding at the interfaces
- stress-free state at 500 ℃
- loading:
 5-20 MW/m²
- cooling:
 T = 100 °C
 p = 4 MPa
 twisted tape

Finite Element Simulations - Stresses

●FGM + brush ■ brush – w/o FGM

Vacuum Plasma Sprayed W/Cu-Gradient

Fabrication of Actively Cooled Components

- I. Cu-coating on the FGM
- II. Ni-coating on OFHC-Cu (both sides)
- III. Mounting of CuCrZr, OFHC-Cu and W+FGM in a Cu-can (vacuum)

IV. HIP cycle: 3h, T = 550 ℃ 1h. T = 450 ℃

24 x 24 mm²

Castellation

- module A:
- module B:

cutting width:

Porosity in the Gradient

Interface Ultrasonic Inspection

Screening Tests (1)

Electron beam loading: JUDITH (FZJ)

8 MW/m²: failure: brick 3 19.2 MW/m²: failure: brick 1

Thermal Fatigue Tests (1)

Electron beam loading: JUDITH (FZJ)

14.8 MW/m²: 1 cycle, failure: brick 2

W-Oberfläche

Screening Tests (2)

Electron beam loading: JUDITH (FZJ)

Thermal Fatigue Tests (2)

Electron beam loading: JUDITH (FZJ)

20 MW/m²: 100 cycles + 50 cycles 10 s loading, 20 s cooling degradation at the edges

Failure Analysis

Surface Modification

Temperature monitoring

Thermal Fatigue Test – Infrared Pictures

Thermal Fatigue Test – Temperature Graphs

Vacuum plasma sprayed W/Cu-gradient: <u>W-content > 75vol%</u>

Castellation of the plasma facing material still necessary

High performance of test component: <u>150 cycles at 20 MW/m²</u>

Full potential not yet reached

<u>Problem</u>

Castellated structure: <u>critical joint between gradient and</u> <u> $OFHC-Cu \rightarrow not \ yet \ optimized$ </u>

THE END!!!

