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Plan of talk
• Introduction

• EU Power Plant Conceptual Study (PPCS) Models A, B and
AB with W armour

• Fusion power-plant (FPP) conditions: required plasma
facing material (PFM) properties

• Neutron spectra (MCNP code)

• Tungsten transmutation with neutron resonance self-
shielding to W-Re-Os alloys (EASY-2003 code)

• Trajectories in W-Re-Os thermodynamic phase diagram

• Discussion and Conclusions
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Assumed armour conditions
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SteadySome PMIPlasma quiescence

< 5< 10000<E> CX atoms (eV)

< 1024< 1018Flux CX atoms (m-2 s-1)

~ 12 - 2.2Neutron load (MW m-2)

< 15< 0.5Mean heat flux (MW m-2)

< 1500~ 750Temperature (K)
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W transmutation
•W186(n,γ)W187 strong
resonances at En~20 eV

•Calculated in continuous-
energy representation in
MCNP
•Calculations of the W
transmutation are complex
and sensitive to neutron
spectra
•Geometry - effect of
nearby neutron-moderating
materials Alloy composition is time

and plant design sensitive
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PPCS features & materials
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PPCS: First wall model
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PPCS: Divertor model
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Neutron spectra: first wall armour
PPCS FW armour (avg) spectra comparison

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E+18

1.E+19

1.E+20

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

energy (MeV)

fl
u

x 
p

er
 u

n
it

 le
th

ar
gy

 (
n

/m
2s

)

PMA avg
PMB avg
PM-AB avg

W absorption dip at ~ 20 eV visible for all
three PPCS models studied



Cottrell EUROMAT 2005

Neutron resonance self-shielding

2mm thick W FW armour: self-shielding at ~ 20 eV

Difference between front and rear faces

PPCS PMB FW armour spectra
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W self-shielding in wall armour

Reaction rate RR calculated
with continuous energy

Water / Be behind armour in
models A and B moderate
neutron spectrum → large σeff

Shielding smallest at rear face

He coolant in model AB →
harder neutron spectrum →
smaller σeff

FW armour comparison of W186(n,g)W187 
effective cross section vs. distance from PF surface
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W-Re-Os Alloy composition
model A FW armour

model A outb midplane FW
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W-Re-Os Alloy composition
model AB FW armour
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Self-shielding in 25mm W
divertor armour

Shielding again
smallest at rear face of
armour

Model B has lower
neutron moderation
than Model A in the
divertor because it has
He and not water
coolant
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W-Re-Os Alloy composition
model A divertor armour
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W-Re-Os Alloy composition
model AB divertor armour
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Phase stability: model A Divertor

Armour remains in bcc α field for service life

Rear Front



Cottrell EUROMAT 2005

Phase stability: model A First wall

Armour remains in bcc α field for service life

Rear Front
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W-Re precipitates
•Despite the alloys remaining in the single bcc field for
their service lifetimes, the end-of-service
concentrations of transmutant elements Re and Os
are significant

•Several previous neutron irradiation studies show
homogeneously nucleated W-Re and W-Re3
precipitates in W alloyed with as little as 5%Re, i.e. in
the 100% bcc field, in disagreement with the phase
diagram

•Such precipitates harden, raise the DBTT and
embrittle the armour and need further study



Cottrell EUROMAT 2005

Conclusions I
• The W-Re-Os alloy composition is sensitive to the

neutron spectrum and therefore to the choice of
breeder/coolant materials

• Important to include the large tungsten neutron
resonance for the self-shielding

• The W-Re-Os alloys in the first wall and divertor
armour remain in the bcc field for their required
service lifetimes

• After 5 y, the W first wall armour becomes an alloy
with a composition close to the α + σ field of the
phase diagram

• Such alloys should be thermodynamically stable
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Conclusions II

• However, neutron irradiation induced precipitates
of W-Re, W-Re3 nucleate in W alloyed with as
little as 5%Re, i.e. in the 100% bcc field

• The mechanism for this is not understood
• The hardening and DBTT increase could embrittle

FW armour, particularly at joints
• Suggest new neutron irradiation experiments on

W-Re-Os alloys, in the concentration ranges
calculated here, to check mechanical properties


