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Assumed armour conditions

First Wall |Divertor
Temperature (K) ~ 750 <1500
Mean heat flux (MW m-2) < 0.5 <15
Neutron load (MW m-2) [2-2.2 ~
Flux CX atoms (m~<s1) |<1078 < 1024
<E> CX atoms (eV) <10000 (<5
Plasma quiescence Some PMI | Steady
Service life (y) 5 2.5
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W transmutatlon
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PPCS features & materials

Model A Model B
Fusion Power (GW) 5.00 3.60 4.29
Divertor Peak load (MW.m=2) 15 10 10
Average neutron wall load 2.2 2.0 1.8
Major Radius (m) 9.55 8.6 9.56
Blanket
Structural material Eurofer Eurofer Eurofer
Coolant / Toutlet (C) H,O /325 He / 500 He / 500
Breeder / neutron multiplier LiPb Li4SiO4 pebble | LiPb (no Be)

bed / Be

Divertor
Structural material [CuCrZr] W alloy W alloy
Armour material W alloy W alloy W alloy
Coolant H,O He He
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PPCS: First wall model
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Armour FW FW Breeder Zone
W | Eurofer + Eurofer | Eurofer + H,O +
H,O Li - Pbg,
W Eurofer + Eurofer | Eurofer + He + Be +
He Li,SiO,
W Eurofer + Eurofer | Eurofer + He +
He Li,,Pbg,
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PCS: Divertor model
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Armour Heat Sink Structure
A W Eurofer + W + CuCrZr Eurofer +H,0
+OFHC+H,0
B W Eurofer + W + He Eurofer + He
W Eurofer + W + He Eurofer + He
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Neutron spectra: first wall armour

PPCS FW armour (avg) spectra comparison
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W absorption dip at ~ 20 eV visible for all
three PPCS models studied
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Neutron resonance self-shielding

PPCS PMB FW armour spectra
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2mm thick W FW armour: self-shielding at ~ 20 eV

Difference between front and rear faces
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W self-shielding in wall armour

FW armour comparison of W186(n,g)W187
effective cross section vs. distance from PF surface
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distance from PF surface (mm)

Effective cross-section
RR
eﬁ N ° ¢

Reaction rate RR calculated
with continuous energy

O

Water / Be behind armour in

models A and B moderate
neutron spectrum — large o,

Shielding smallest at rear face

He coolant in model —
harder neutron spectrum —
smaller o,



atomic concentration (%)

0.01 -+

0.001

Cottrell EUROMAT 2005

0.1

W-Re-0Os Alloy composition
model A FW armour

model A outb midplane FW
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after |face |W Re Os
At% |At% | At%

S5y |rear [90.8 |6.1 3.2
front | 95.3 | 3.0 1.7

10y |rear |82.9 |7.7 10.0
front |[90.6 |4.1 5.2

Model B is similar




W-Re-0Os Alloy composition
FW armour

model AB outb midplane FW
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after |face |W Re Os
At% |At% | At%

S5y |rear (971 |2.7 |0.3
front | 97.2 | 2.6 0.2

10y |rear |94.2 |48 1.0
front |[94.5 |4.6 1.0
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Shielding again
smallest at rear face of
armour

Model B has lower
neutron moderation
than Model A in the
divertor because it has
He and not water
coolant



W-Re-0Os Alloy composition
model A divertor armour

model A divertor
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W-Re-0Os Alloy composition
divertor armour

atomic concentration (%)

model AB divertor
' after |face |W Re |Os
W ot — Re_front — 05 front At% |At% |At%
7 25y |rear |986 (1.3 |01
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Sy rear (9/7.0 |26 |04
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0.001 front |97.5 |22 |0.2
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Phase stability: model A Divertor

100 an an 100 an an
Percent W Percent W

Rear Front

Armour remains in bcc o field for service life




Phase stability: model A First wall

Re Re
Percent W Percent W

100 S0 a0 100 S0 a0

Rear Front

Armour remains in bcc o field for service life




W-Re precipitates

*Despite the alloys remaining in the single bcc field for
their service lifetimes, the end-of-service
concentrations of transmutant elements Re and Os
are significant

*Several previous neutron irradiation studies show
homogeneously nucleated W-Re and W-Re3
precipitates in W alloyed with as little as 5%Re, i.e. in
the 100% bcc field, in disagreement with the phase
diagram

*Such precipitates harden, raise the DBTT and
embrittle the armour and need further study
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Conclusions |

The W-Re-Os alloy composition is sensitive to the
neutron spectrum and therefore to the choice of
breeder/coolant materials

Important to include the large tungsten neutron
resonance for the self-shielding

The W-Re-Os alloys in the first wall and divertor
armour remain in the bcc field for their required
service lifetimes

After 5y, the W first wall armour becomes an alloy
with a composition close to the a + o field of the
phase diagram

Such alloys should be thermodynamically stable
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Conclusions |l

However, neutron irradiation induced precipitates
of W-Re, W-Re3 nucleate in W alloyed with as
little as 5%Re, i.e. in the 100% bcc field

The mechanism for this is not understood

The hardening and DBTT increase could embirittle
FW armour, particularly at joints

Suggest new neutron irradiation experiments on
W-Re-Os alloys, in the concentration ranges
calculated here, to check mechanical properties
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