Transmutation and phase stability of tungsten armour in fusion power plants

> <u>G A Cottrell</u>, R Pampin, and N Taylor EURATOM/UKAEA Fusion association Culham Science Centre Abingdon, Oxfordshire, OX14 3DB, UK

Plan of talk

- Introduction
- EU Power Plant Conceptual Study (PPCS) Models A, B and AB with W armour
- Fusion power-plant (FPP) conditions: required plasma facing material (PFM) properties
- Neutron spectra (MCNP code)
- Tungsten transmutation with neutron resonance selfshielding to W-Re-Os alloys (EASY-2003 code)
- Trajectories in W-Re-Os thermodynamic phase diagram
- Discussion and Conclusions

Assumed armour conditions

	First Wall	Divertor
Temperature (K)	~ 750	< 1500
Mean heat flux (MW m ⁻²)	< 0.5	< 15
Neutron load (MW m ⁻²)	2 - 2.2	~ 1
Flux CX atoms (m ⁻² s ⁻¹)	< 10 ¹⁸	< 10 ²⁴
<e> CX atoms (eV)</e>	< 10000	< 5
Plasma quiescence	Some PMI	Steady
Service life (y)	5	2.5

W transmutation

- •W186(n, γ)W187 strong resonances at E_n~20 eV
- •Calculated in continuousenergy representation in MCNP
- •Calculations of the W transmutation are complex and sensitive to neutron spectra
- •Geometry effect of nearby neutron-moderating materials

Alloy composition is time and plant design sensitive

PPCS features & materials

	Model A	Model B	Model AB
Fusion Power (GW)	5.00	3.60	4.29
Divertor Peak load (MW.m ⁻²)	15	10	10
Average neutron wall load	2.2	2.0	1.8
Major Radius (m)	9.55	8.6	9.56
Blanket			
Structural material	Eurofer	Eurofer	Eurofer
Coolant / Toutlet (C)	H ₂ O / 325	He / 500	He / 500
Breeder / neutron multiplier	LiPb	Li4SiO4 pebble bed / Be	LiPb (no Be)
Divertor			
Structural material	[CuCrZr]	W alloy	W alloy
Armour material	W alloy	W alloy	W alloy
Coolant	H ₂ O	Не	Не

PPCS: First wall model

	1-5	6	7	8
	Armour	FW	FW	Breeder Zone
A	W	Eurofer + H ₂ O	Eurofer	Eurofer + H ₂ O + Li ₁₇ Pb ₈₃
В	W	Eurofer + He	Eurofer	Eurofer + He + Be + Li ₄ SiO ₄
AB	W	Eurofer + He	Eurofer	Eurofer + He + Li ₁₇ Pb ₈₃

PPCS: Divertor model

	1-5		6-7	8
		Armour	Heat Sink	Structure
A W		W	Eurofer + W + CuCrZr +OFHC+H ₂ O	Eurofer +H ₂ O
	В	W	Eurofer + W + He	Eurofer + He
	AB	W	Eurofer + W + He	Eurofer + He
2005				

Neutron spectra: first wall armour

W absorption dip at ~ 20 eV visible for all three PPCS models studied

Neutron resonance self-shielding

2mm thick W FW armour: self-shielding at ~ 20 eV

Difference between front and rear faces

W self-shielding in wall armour

Effective cross-section

$$\sigma_{eff} = \frac{RR}{N_{\rm W} \bullet \phi}$$

Reaction rate RR calculated with continuous energy

Water / Be <u>behind</u> armour in models A and B moderate neutron spectrum \rightarrow large $\sigma_{e\!f\!f}$

Shielding smallest at rear face

He coolant in model AB \rightarrow harder neutron spectrum \rightarrow smaller $\sigma_{\rm eff}$

W-Re-Os Alloy composition model A FW armour

after	face	W	Re	Os
		At%	At%	At%
5 y	rear	90.8	6.1	3.2
	front	95.3	3.0	1.7
10 y	rear	82.9	7.7	10.0
	front	90.6	4.1	5.2
Model B is similar				

model A outb midplane FW

W-Re-Os Alloy composition model AB FW armour

model AB outb midplane FW

after	face	W	Re	Os
		At%	At%	At%
5 y	rear	97.1	2.7	0.3
	front	97.2	2.6	0.2
10 y	rear	94.2	4.8	1.0
	front	94.5	4.6	1.0

Self-shielding in 25mm W divertor armour

Shielding again smallest at rear face of armour

Model B has lower neutron moderation than Model A in the divertor because it has He and not water coolant

W-Re-Os Alloy composition model A divertor armour

model A divertor

after	face	W At%	Re At%	Os At%
2.5 y	rear	95.4	3.4	1.2
	front	97.8	1.7	0.5
5 y	rear	91.0	5.1	3.9
	front	95.5	2.7	1.8

Model B is similar

Cottrell EUROMAT 2005

W-Re-Os Alloy composition model AB divertor armour

Re

At%

1.3

1.1

2.6

2.2

Os

At%

0.1

0.06

0.4

0.2

model AB divertor

Phase stability: model A Divertor

Armour remains in bcc α field for service life

Phase stability: model A First wall

Armour remains in bcc α field for service life

W-Re precipitates

•Despite the alloys remaining in the single bcc field for their service lifetimes, the end-of-service concentrations of transmutant elements Re and Os are significant

•Several previous neutron irradiation studies show homogeneously nucleated W-Re and W-Re3 precipitates in W alloyed with as little as 5%Re, i.e. in the 100% bcc field, in disagreement with the phase diagram

•Such precipitates harden, raise the DBTT and embrittle the armour and need further study

Conclusions I

- The W-Re-Os alloy composition is sensitive to the neutron spectrum and therefore to the choice of breeder/coolant materials
- Important to include the large tungsten neutron resonance for the self-shielding
- The W-Re-Os alloys in the first wall and divertor armour remain in the bcc field for their required service lifetimes
- After 5 y, the W first wall armour becomes an alloy with a composition close to the α + σ field of the phase diagram
- Such alloys should be thermodynamically stable

Conclusions II

- However, neutron irradiation induced precipitates of W-Re, W-Re3 nucleate in W alloyed with as little as 5%Re, i.e. in the 100% bcc field
- The mechanism for this is not understood
- The hardening and DBTT increase could embrittle FW armour, particularly at joints
- Suggest new neutron irradiation experiments on W-Re-Os alloys, in the concentration ranges calculated here, to check mechanical properties