

Characterization of Fe-Cr alloys using SANS, nanoindentation and ultrasound

C. Heintze, F. Bergner, A. Ulbricht

Forschungszentrum Dresden-Rossendorf, Dresden, Germany

Special thanks to the staff of SCK·CEN for providing the material and encouraging the present investigation.

The work is partly funded by the EC within the project GETMAT.

Plan

- 1. Aim and Scope
- 2. Experiments
 - 2.1 Materials
 - 2.2 SANS
 - 2.3 Nanoindentation
 - 2.4 Sound velocity measurement
- 3. Results and Discussion
 - 3.1 SANS
 - 3.2 Indentation hardness
 - 3.3 Elastic properties
 - 3.4 Irradiation response (selected results)
- 4. Conclusions

In general:

- Cr steels are candidate materials for Gen IV fission and fusion applications.
- A multiscale modelling approach to the irradiation behaviour of Cr steels requires modelling-oriented experiments.
- Effect of Cr on constitution and properties not yet well understood.

In particular:

- The present set of alloys already basically characterized in [1].
- Distribution in the framework of the EU project GETMAT.
- More complete basic characterization is desirable.
- Unirradiated conditions as reference for irradiation effects.

[1] M. Matijasevic et al., EUROMAT 2005, and M. Matijasevic et al., JNM 377 (2008) 147

Composition

Fe-2.5at%Cr (Alloy 251) Fe-5at%Cr (Alloy 259) Fe-9at%Cr (Alloy 252) Fe-12.5at%Cr (Alloy 253)

Provided by SCK·CEN, Mol

Composition (wt%)

Alloy	Mn	Si	Р	S	Al	Ti	Cr	Ni	0	С	Ν
251	0.009	0.02	0.013	0.0020	0.003	0.004	2.4	0.044	0.035	0.008	0.0117
259	0.02	0.04	0.011	0.006	0.0033	0.0028	4.6	0.06	0.065	0.02	0.0127
252	0.03	0.09	0.012	0.00066	0.0069	0.0034	8.4	0.07	0.066	0.02	0.0148
253	0.03	0.11	0.05	0.006	0.003	0.0037	11.6	0.09	0.03	0.027	0.0237

Treatment

Normalized (1050°C / 3 h / air cooling) & tempered (730°C / 4 h / air cooling)

Euromat 2009, September 7-10, Glasgow

Grain size

Ferrite fraction

1.2

TEM Dislocation density, ρ / 10¹³ m⁻² 5.8 6.3

Matijasevic et al., JNM 377 (2008) 147

Euromat 2009, September 7-10, Glasgow

Contact: f.bergner@fzd.de

Slide No. 5

5.5

2.2 SANS

Principle

SANS experiments at GKSS Geesthacht, Germany λ = 0.58 nm; sample-detector distances: 1, 4 and 16 m; Q range: 0.1 - 3 nm⁻¹ *Thanks to the local contact, H. Eckerlebe, for technical assistance.*

Contact: f.bergner@fzd.de

2.3 Nanoindentation

UNAT

Nanomechanics device - UNAT (ASMEC)

- force resolution <100 nN
- displacement resolution <50 pm
- force noise <10 μ N
- displacement noise <1 nm
- x-y-z stage range 200 mm x 50 mm x 50 mm steps 0.5 μm x 0.1 μm x 0.1 μm
- tandem microscope (optical)
- Berkovich indenter
- housing with thermal and electromagnetic isolation and active vibration damping

AFM Nanite B (Nanosurf)

- built-in or stand-alone
- x-y-z range 110 μm x 110 μm x 20 μm
- contact- and dynamic mode

Pulse-echo technique, 5 MHz, RT $d \approx 10 \text{ mm}, \Delta t_{\text{L}}, \Delta t_{\text{T}} \rightarrow c_{\text{L}}, c_{\text{T}} \rightarrow v, E, G, B$

$$v = \frac{1 - 2(c_{\rm L} / c_{\rm T})^2}{2 - 2(c_{\rm L} / c_{\rm T})^2}$$
$$G = \rho c_{\rm T}^2$$
$$E = \rho c_{\rm L}^2 \frac{(1 + \nu)(1 - 2\nu)}{1 - \nu}$$
$$B = \rho c_{\rm L}^2 \frac{1 + \nu}{3(1 - \nu)}$$

3.1 SANS results

3.2 Indentation hardness

1000

Main findings:

- previous work partly contradictiory Speich et al., Met. Trans. (1972) Drapkin, Probl. Prochnosti (1973) minimum of E, G and B at ~5 at% Cr in agreement with MD calculations Olsson et al., JNM 321 (2003) 84
- possible source of the observed hardness anomaly?

<u>SANS</u>

Fe-12.5at%Cr, neutron-irradiation, 300°C, 0.6 dpa, 1.5 dpa

Main findings:

(1) saturation, (2) formation of α['],
(3) solubility of Cr in Fe at 300°C: (8.8 ± 0.5) at% Cr Bergner et al., Scripta Materialia, 61 (2009) 1060

Nanoindentation

Fe-12.5at%Cr Fe-ion irradiation, 300°C, 1 dpa

three ion energies (0.5, 2, 5 MeV) vs one single energy (5 MeV)

Main findings:

- accuracy increases with load
- irrad. effect decreases with load (effect of substrate)
- 5 mN: good trade-off
- mechanistic interpretation:

Heintze et al., ICFRM-14, September 7-12, 2009, Sapporo, Japan

C. Recknagel, Diploma thesis, TU Dresden, 2007 Thanks to D. Schneider, IWS Dresden, for SAW measurements

As-received (unirradiated) conditions of Fe-Cr alloys with 2.5, 5, 9 and 12.5 at% Cr characterized by means of SANS, nanoindentation and ultrasonics

- Elastic properties and nanohardness exhibit peculiar behaviour at about 5 at%, (but SANS not)
- Effect of irradiation (neutrons, Fe-ions) highlighted by selected applications

Thank you for your attention