FATIGUE CRACK GROWTH TESTS ON AUSTENITIC STAINLESS STEEL IN CORROSIVE ENVIRONMENT AT ELEVATED TEMPERATURE

Lukács, J.

University of Miskolc, Department of Mechanical Engineering (DME) H-3515 Miskolc-Egyetemváros, Hungary

European Congress on Advanced Materials and Processes 7-10 September 2009, Glasgow, UK

The aims of the research work

✓ To measure basic data for fatigue crack propagation limit curves on austenitic stainless steel (type 321), in corrosive environment and at elevated temperature

 To determine the design curves based on statistical analysis of measured data and fatigue crack propagation law (Paris-Erdogan law)

 To study the crack behaviour during a hold time on fatigue crack propagation

Test characteristics

✓ Material: 08H18N10T austenitic stainless steel (type 321)

- Environment: water solution (30 g CuSO4*5H2O + 10 g NaCl + 3 g NaOH in 1000 ml water)
- ✓ Specimen type: CT with parallel holes

Specimen	Test temperature, °C	Hold time
FCG1_100	100	_
FCG2_300_100	300 → 100	_
FCG6_100	100	—
FCG7_100_3h	100	3 hours
FCG4_300	300	_
FCG5_290	290	—
FCG3_290	290	_
FCG8_290_3h	290	3 hours

Type and dimensions of specimens

Examination arrangement (front)

Examination arrangement (back)

Injection of the corrosive environment

Crack length vs. number of cycles at 100 °C

Crack length vs. number of cycles at 300 °C

Fatigue crack propagation curves at 100 °C

Stress intensity factor range, DELTA K, MPam^{1/2}

Fatigue crack propagation curves at 300 °C

Stress intensity factor range, DELTA K, MPam^{1/2}

COD during hold time

Fracture surface of the FCG7_100_3h specimen

Fracture surface of the FCG8_290_3h specimen

The constants of the Paris-Erdogan law

Specimen	С	n	Correlation
number	MPam ^{1/2} , mm/cycle		coefficient
FCG1_100	8,079E-09	3,022	0,8447
FCG2_300_100	2,502E-07	2,147	0,4591
FCG6_100	5,084E-10	3,812	0,8374
FCG7_100_3h	1,578E-09	3,488	0,9071
FCG4_300	1,617E-07	2,353	0,7899
FCG2_300_100	—	-	—
FCG5_290	2,705E-08	2,880	0,9433
FCG3_290	1,834E-08	2,984	0,9085
FCG8_290_3h	2,131E-09	3,555	0,9096

Conclusions

The constants of the Paris-Erdogan law correctly describe the fatigue crack propagation measured on CT specimens with parallel holes.

 The fatigue crack propagation characteristics were different at different testing temperatures.

 Stable crack propagation and/or crack tip blunting can be detected during the hold time at 300 °C testing temperature.

Acknowledgements

Author wishes to acknowledge the assistance given by the National Scientific Research Foundation (OTKA T 049126) for supporting the research.

Prof. Dr. János Lukács University of Miskolc, Hungary janos.lukacs@uni-miskolc.hu