NEAR NET SHAPE CASTING OF INTERMETALLIC TITANIUM ALUMINIDE COMPONETS FOR HIGH TEMPERATURE AEROSPACE

AND AUTOMOTIVE APPLICATIONS

Julio Aguilar, Andre Schievenbusch

TiAl – castings for automotive and aero-engine applications

TiAl-based intermetallic materials

- low density, high stiffness
- good oxidation resistance
- attractive high temperature properties
- limited ductility & fracture toughness below BDT
- service temperatures 600℃-800℃

Investment casting of near net shape parts

- cost-efficient production process
- well estabished for titanium alloys
- series production of turbocharger wheels in Japan
- wold-wide efforts viz. casting aero-engine parts

TiAl Investment casting: Key technological features

Requirements resulting from peculiar properties of TiAl

TiAl Investment casting: Overview of process steps

TiAl Investment casting: Access shell mould system

- Y₂O₃ face-coat and backup layers
- Temperature stability up to 1680 ℃
- Low chemical interaction with TiAl melt
- High thermal shock resistance
- High strength for dimensional accuracy
- Robust manufacturing process

TiAl Investment casting: Horizontal centrifugal casting

Process characteristics

VIM in ceramic crucibles Melting capacity: 2.0 kg Superheat: $\Delta T \approx 20$ to 100 K Process duration: 6 - 8 min Rotation speed: up-to 400 RPM Oxygen pick-up: 300 -500 wt-ppm Parameters: ΔT , ω , cluster design

Horizontal centrifugal casting: Numerical simulation

Process simulation

Optimization of casting clusters is supported by numerical simulation of mould filling and solidification.

Features

- Mould filling for geometrically complex industrial parts
- Extremely flow conditions
- Compressible gas
- Permeable ceramic mould
- Moving grid
- Computation of centrifugal- and Coriolis force

Horizontal centrifugal casting: Numerical simulation

Process simulation

Optimization of casting clusters is supported by numerical simulation of mould filling and solidification.

Features

- Mould filling for geometrically complex industrial parts
- Extremely flow conditions
- Compressible gas
- Permeable ceramic mould
- Moving grid
- Computation of centrifugal- and Coriolis force

TiAl Investment casting: Cast Turbocharger Wheels

TiAl-Casting

powered by technology

TiAl Investment casting: Surface defect analysis

Typical Casting Defects

ceramic inclusions

powered by technology

TiAl Investment casting: Internal defect analysis

Computer Thomographie

TiAl Investment casting: Internal defect analysis

X-Ray Analysis for Process Optimization

Incrementing Rotation Speed (metallostatic pressure)

powered by technology

TiAl Investment casting: Macrostructure Analysis

Turbo charger wheel

Alloy RNT-650 (Ti-48Al-2Nb-0,75Cr-0,3Si)

- The solidification morphology depends on local cooling conditions (geometry)
- The grain structure (columnar/equiaxed) is sensitively depending on alloy composition
- Grain size and texture have major impact on mechanical properties

TiAl Investment casting: Dimensional Accuracy

Overall Yield:

Small Series Production After Process Optimization

•	100 wax patterns	Yield wax:	92/100 or 92,0%
•	15 ceramic shell moulds	Yield Ceramic:	14/15 or 93,3%
•	26 castings	Yield casting:	23*/26 or 88,5%

* Good parts complying industry specifications for TiAl Turbocharger wheels

Ew*Esm*Ec

powered by technology

76%

TiAl Investment casting: Yield Improvement

5 Different Compressor Vane Geometries to Establish Production Technology

Stg. 1Stg. 2variable vanesingle va	Stg. 1Stg. 2variable vanesingle vane		Stg. 3 Stg. 4 segments		Stg. 5	
		Stg. 1	Stg. 2	Stg. 3	Stg. 4	Stg. 5
	June 2006	10%	24%	25%	16%	20%
Overall yield	June 2007		37%	40%	56%	62%
	March 2008	40%	66%	41%	52%	70%
Cast parts delivered acc. to spec. for eng	47	193	120	106	148	

Process Scale-up For Series Production

Development and commissioning of an automatic casting line in cooperation with LINN HighTherm

- 2 SuperCast centrifugal casting machines
- Advanced automation level
- Continuous heat treatment after casting
- Melting capacity: up to 2 kg
- Productivity: 20 clusters / h

- Significant experience with small series production of near net shape aero-engine vanes and turbocharger wheels has been gained.
- 2. Production scale-up concepts are being qualified for economical production of TiAl components.
- 3. First European foundrys are willing to take over and establish series production.

