

Radiation tolerance of ternary carbides using in situ ion irradiation bombardment

MELBOURNE

Karl R Whittle, Mark G Blackford, Sam Moricca and Gregory R Lumpkin Institute of Materials, ANSTO, Menai, NSW, Australia

Daniel P Riley

Dept of Mechanical Engineering, University of Melbourne, Vic, Australia

Nestor J Zaluzec

Materials Science Div, Argonne National Lab, Argonne, IL, USA

Layered Ternary Carbides

- General formulation M_{n+1}AX_n
 - M = Ti, Cr, V
 - A = Si, Al, Sn, Ga
 - X = C, N
- Based on Ti₆C layers interleaved by A atoms
- Compositions
 - Ti₃AIC₂ and Ti₃SiC₂

Why Ternary Carbides

- Properties of ceramic and metal system
- High Mechanical Strength
 - Retains strength to high temperatures

High Chemical Resistance

- Will resist attack under extreme conditions
- Electrically conductive
- Ductile and Machinable
- Low neutron absorption
 - Ti, AI, Si and C all have minimal absorption cross-sections
 - Little neutron activation in reactors

Applications

Structural Materials

- Low density and machinable

Substitute for Ceramics

- Wear/corrosion protections

Heat Exchangers

- Excellent thermal conductivity

Extreme Radiation Fields

- Gen IV fission
- Fusion liners

Ion Beam Irradiation

- Argonne National Laboratory
- TEM
 - 300kV Hitachi H-9000NAR
- Variable Ion Source
 - Kr²⁺ and Xe²⁺
- Variable Temperature - 50 K and 300 K
- In situ monitoring of damage

Damage Events

1 MeV Kr²⁺ Irradiation

Irradiation at 50 K

- isolated grains dispersed on 'holey' carbon film
- grains monitored during irradiation in both diffraction and imaging
- during irradiation film failed with loss of samples

Irradiation at 300 K

- dispersed grains
- film support survived
- grains irradiated to 3.75x10¹⁵ ions cm⁻² (8-12 dpa)
- difference between Ti_3SiC_2 and Ti_3AIC_2

Ti₃SiC₂

Ti₃AIC₂

9

Nuclear-based science benefiting all Australians

Ti₃AIC₂

1 MeV Xe²⁺ Irradiation

- Change in mass/energy profile
 - Damage comparison at 100 nm e.g. Ti₃AlC₂
 - 1 MeV Kr ~ 1.5 displacements Å⁻¹ ion⁻¹
 - 1 Mev Xe ~ 3.5 displacements Å⁻¹ ion⁻¹

Samples thinned films

- Multiple areas monitored
- Irradiated at 300 K
- Irradiated to 6.25x10¹⁵ ions cm⁻² (25-30 dpa)
- Similar difference to before

Ti_3SiC_2

Ti₃AIC₂

Post Irradiation

Ti₃AIC₂

What is going on?

- Rapid re-crystallisation
 - samples retain crystallinity at 50 K to 3.125x10¹⁵ ions cm⁻²

Close packed materials

damage tracks formed not bulk amorphous volume

Formation of impurity phases?

- SiC defects formed from Si and C displaced from Ti₃SiC₂
 - sp³ hybridisation of Si-3s/3p and C-2s/2p
 - stable material
 - lower damage cross section , i.e. amorphous at 0.3-2 dpa
 - much lower packing efficiency

Evidence

Density of state calculations

- show overlap of Si and C no overlap between Al and C
- significant overlap between Ti and C, with strong bond

Giant covalent matrix

- SiC can from extended defects/clusters during irradiation
- TiC, TiN, and ZrC form isolated defects

Packing efficiencies

- $Ti_3 XC_2 \sim 85\%$
- TiC ~ 75%
- SiC ~ 37% (3C and 6H)

Comparison

• SRIM 2008 used to predict damage

- Ti₃SiC₂ shows more damage at sample thickness
- Ti₃AlC₂ shows wider damage range

Conclusions

- High tolerance for damage
- Rapid recovery process
- Ti₃AlC₂ slightly better than Ti₃SiC₂

Further Work

- High level bulk irradiations to 100-150 dpa
- Combination work with DFT

Ginsto

Nuclear-based science benefiting all Australians