

The effect of strong and weak interfaces on thermophysical properties of metal matrix composites reinforced with high modulus and high thermal conductivity C fibres – K 1100

K. Izdinsky, P. Stefanik, F. Simancik, N. Beronska, T. Dvorak, S. Kudela, J. Korab

slovak academy of sciences

Coefficient of thermal expansion [x10⁻⁶K⁻¹]

Thornel K1100 carbon fibre

Tensile strength [GPa]	3.10
Tensile modulus [GPa]	965
Density [kg/m ³]	2200
Filament diameter [µm]	10
Carbon Assay [%]	99+
Surface Area [m ² /kg]	400
Electrical Resistivity [μΩ.m]	1.1 – 1.3
TC in longitudinal direction [W m ⁻¹ K ⁻¹]	900 - 1000
TC in transversal direction [W m ⁻¹ K ⁻¹]	2.4
Longitudinal CTE at 21°C [10 ⁻⁶ K ⁻¹]	- 1.5
Transversal CTE at 21°C [10 ⁻⁶ K ⁻¹]	12.0

slovak academy of sciences

Cu-C composite – - no wetting

- no reaction

Mg-C composite – no wetting - no reaction with

allov	carbide	temperature	contact angle		
		[°C]	[°]		
Cu	Cr ₃ C ₂	1100	47		
Cu	Cr ₃ C ₂	1150	44		
Cu	TiC	1100-1200	112-109		
Cu	ZrC	1100	135		

For both systems the improvement of interfacial bonding is a necessity

in Cu-C composite by alloying with Cr in Mg-C composite by alloying with Al

AI-C composite strong interfacial reaction that needs to be avoided

Alloying of AI with surface active element Mg was adopted

Infiltration parameters	Cu-C	AI-C	Mg-C
Temperature [℃]	1200	750	730
Time [s]	300	120	300
Pressure [MPa]	6	5	8

Structure of Cu0.2Cr-K1100 composite

Structure of Cu1Cr-K1100 composite

Euromat 2009, Glasgow sept. 7-10

Structure of AI3Mg-K1100 composite a) without and b) with TiN separator particles

Structure of Mg2Al-K1100 composite

Cu-K1100

Cu0.2Cr-K1100

Cu1Cr-K1100

Al3Mg-K1100

Al3Mg-K1100 s TiN

Mg2Al-K1100

Cu0.2Cr-K1100

Cu1Cr-K1100

Al3Mg-K1100

Mg2Al-K1100

℃000

℃000

℃000

350℃ Al3Mg-K1100 s TiN

350℃

- > negative CTE in the whole temperature range
- small differences in thermal expansion
- Stronger interfaces in v Al3Mg-C and Mg2Al-C composites
- smaller residual stresses in Al3Mg-C and Mg2Al-C composites

CTE [10 ⁻⁶ K ⁻¹]	Cu-K1100		Cu1Cı	Cr-K1100 Al3Mg-K1		g-K1100	Al3Mg-K1100 s TiN		Mg2Al-K1100	
150-250℃	heat.	cool.	heat.	cool.	heat.	cool.	heat.	cool.	heat.	cool.
	-0.7	-0.7	-0.9	-0.9	-1.9	-1.7	-1.8	-1.6	-1.1	-0.9
CTE _τ	21.1	19.7	21.4	20.6	23.8	20.8	27.4	25.3	26.4	23.2

Conclusions

- the interfacial bonding in metal matrix (Cu, Al, Mg) can be effectively influenced by proper matrix alloying and kinetic parameters of infiltration
- higher TC and lower CTE in all composites has been achieved when compared with pure Cu
- composites can be used as heat sink materials particularly in those cases where materials with high thermal conductivity and low CTE are required and the anisotropy can be accepted (utilized)
- MgAI-K1100 and AIMg-K1100 can be used in applications where low density is required
- ❑ the role of interface in the composites reinforced with unidirectionally aligned continuous fibres appears to be not as dominant as in short fibre or particulate reinforced composites

slovak academy of sciences

Acknowledgement

This work has been performed within the framework of the Integrated European Project "ExtreMat" (contract NMP-CT-2004-500253) and with financial support by the European Community. It only reflects the view of the authors and the European Community is not liable for any use of the information contained therein.

Thank you for your attention