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Outline
“Fusion will be ready when society needs it”  
Lev Artsimovich  (~1972)

• The materials conditions likely within a fusion power plant

• Metallurgical knowledge: the yield stress and Charpy 
toughness in low activation ferritic martensitic irradiated 
steels

• Neural networks in an extrapolation mode: dimensionality 
reduction: complexity optimisation

• Predicting the most suitable alloys from existing data:
Benefit functions for yield stress, Charpy and activation
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ITER Major radius 6.2 m: Minor radius 2.0m
Construction costs £5 Billion in 10 years
Stainless Steel 316L-IG components
Wall load 0.5 MWm-2

Irradiation level: about 4 dpa in lifetime
Irradiation temperature about 300 oC
Pulse length: about 1000 secs
Site in France (Cadarache) chosen 2005
Construction started 2008
Operations due to commence 2018

Funded  by Europe, Japan, Russia, 
US, China, South Korea and India

Aim – to demonstrate 
integrated physics and 
engineering on the scale of a 
power station
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Major radius = 8.6m Minor 1.9m

Continuous operation

Fusion power 3.6GW

Net electrical power  = 1.3 GW

Power cycle efficiency = 36%

Wall load 2.0 MWm-2 

Irradiation over component lifetime:  
about 40 dpa for divertor:                
around 100 dpa for blanket                      

Irradiation temperature about 400C 

Power Plant Conceptual Study (B)

“A Conceptual Study of Commercial Fusion Power Plants” EFDA-RP-RE-5.0,  (2004)
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Predicting the metallurgical properties of 
highly irradiated steels from 

measurements at lower irradiation
Use existing databases for the properties of irradiated ferritic
steels in collaboration with Prof Bhadesia’s group at Cambridge

We use neural networks trained at low irradiation levels,       
say <40 displacements per atom (dpa),
to predict the properties, 
say yield stress and Charpy toughness, at the levels of irradiation 
(~40 dpa or higher) of the fusion power plant

Colin Windsor, Geoff Cottrell and Richard Kemp, “Prediction of yield stress in highly 
irradiated ferritic steels” Modelling Simul. Mater. Sci. Eng. 16 (2008) 025005 , 
stacks.iop.org/MSMSE/16/025005: 
“Prediction of the Charpy transition temperature in highly irradiated ferritic steels”, 
Modelling Simul. Mater. Sci. Eng. 16 (2008) 075008. stacks.iop.org/MSMSE/16/075008/
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The yield stress and Charpy shift
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The yield stress measures 
the maximum strength of a 
material while it behaves 
elastically.

The Charpy shift measures the 
change of toughness of a 
material under irradiation.
Irradiated samples are sub-size.

A stress rig

A Charpy 
impact tester



Euromat September 2009 7

0

50

100

200 700
Irradiation temperaure (K)

Irr
ad

ia
tio

n 
le

ve
l (

dp
a)

Fusion reactor relevance
Yield stress Charpy shift

The plot shows the limited information at fusion reactor levels,
which we define as say from 25-55 dpa and 300-500 K. 
For  more data we have to wait for ITER (2018) or IFMIF (even later)
For now we can train a network outside this range (open symbols) and 
Test within the range (closed symbols)
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High irradiation results (BIGBACK)
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These neural net fits were trained with a 50% selection 
of data outside the reactor relevant region and tested 
with the remainder. The committee automatically 
optimised the fit. The validation data lay within the 
reactor relevant region. The Cambridge Bayesian code 
of  David  MacKay was used.

Thomas Bayes
1702-1761

-50

50

150

250

350

-50 50 150 250 350

Actual Charpy shift (K)

P
re

di
ct

ed
 C

ha
rp

y 
sh

ift
 (K

)

Train and test
Validation

Automatically chosen committee



Euromat September 2009 9

Extrapolation is not easy!

The points are a 3rd order 
polynomial with imposed 
random deviations 

The blue points below 40 
are used for training

The lines are polynomials 
fitted to the training points 
with the order shown
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Dimensionality optimisation

Several methods may be used:
(i) Low hidden unit numbers in neural net fits

(i) Only use inputs which are shown to be beneficial
(forward selection of features method)

(iii) Rather than use individual atomic fraction inputs, 
use linear combinations of inputs (target-driven 
components method)

In difficult “extrapolation” conditions, there is a need to 
use fitting processes which appropriately reduce the 
number of adjustable variables.
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Results with low hidden units
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These networks are selected from the previous committee 
networks to give a optimal fit with the validation data. The 
validation residual and its error are much improved.

Thomas Bayes
1702-1761
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Results with combination inputs

Yield stress

The inputs to these networks are linear combinations of atomic 
fractions. Performance is even better
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Training Charpy data with 
varying network complexity

The training, testing and validation data scatter plots Charpy shift data. 
Training data is below 10 dpa, testing data between 10 and 20 dpa  and 
validation data above 20 dpa.  The network was trained using atomic 
concentration inputs.
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Finding an optimal alloy 
A desirable alloy for a fusion reactor would have:
i) High yield stress: but too high may be brittle
ii) Good toughness – low Charpy shift under irradiation
iii) Low activation after 100 years 

We use the neural net to predict the first two properties for each alloy in 
the database under reactor conditions, and the data of Gilbert and 
Forrest to predict the activation.

e.g.   Irradiation 40 dpa (displacements per atom)
Irradiation temperature  400 C
16 months operation

based on the European Fusion Development Agreement
(EFTA) Power Plant Conceptual Study (PPCS model B) 

A triple product of  “(property value) x (benefit function)” 
is used to find the optimal series of alloys
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The yield stress of all the alloys 
Experimental values are compared with raw predictions for each 
alloy and with predictions at reactor conditions of 40 dpa and 400 C. 
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The Charpy shift of all the alloys 
Experimental values are compared with raw predictions for each alloy 
and with predictions at reactor conditions of 40 dpa and 400 C. 
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Residual activation after 100 years  

10.0

100.0

1000.0

10000.0

1 501 1001 1501 2001

Alloy number

A
ct

iv
at

io
n 

(B
q/

K
gx

10
-7

)

Activation after 100 years (log scale)

Decay half width = 10
Benefit function

Each alloy is assumed to have been irradiated under reactor 
conditions for 16 months, then left for 100 years (US standard).
From Gilbert M R and Forrest R A, 2004 
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The benefit function: 
choosing a suitable alloy  

Each property (yield stress, Charpy shift and activation) is weighted 
with the “benefit function” shown by the black lines in the previous 
three slides and the three products are multiplied together.
The alloys are re-arranged into decreasing benefit order (log scale). 

Benefit function
triple product
(Log-scale)

0.0001

0.001

0.01

0.1

1
0 500 1000 1500 2000

Alloy number (re-ordered)

B
en

ef
it 

fu
nc

tio
n

9C
rV

O
P

TI
FE

R

E
ur

of
er

N
LF

-0

F8
2H

M
an

et
II

9C
r-1

M
oV

N
b

JL
F

9C
r-

1W
VT

a 9C
r-

2W
VT

a
O

R
N

L9
C

r2
W

V
Ta

(high Charpy)x(high activation)



Euromat September 2009 19

Conclusions
•A fusion reactor has demanding metallurgical problems. 
We presently lack reactor-relevant data on irradiated samples

•The yield stress, Charpy shift and activation are important properties for 
which useful databases exist, especially at lower irradiation levels

•Neural networks can extrapolate these metallurgical properties which 
appear to vary smoothly with irradiation level and temperature. They 
therefore provide a framework for predicting reactor-relevant properties

•The alloys within the database have been weighted by a product of 
“benefit functions” to determine the most suitable of current alloys. These 
functions can easily be changed.

•The prediction of new alloys using these methods will be the next step


