# Influence of microstructural heterogeneity on the micro-meso deformation of a two-phase TiAl alloy investigated by

nanoindentation and a numerical two scale model

#### M. R. Kabir<sup>1</sup>, L. Chernova<sup>1</sup>, N. Zotov<sup>2</sup>, M. Bartsch<sup>1</sup>

<sup>1</sup>Institute of Materials Research, German Aerospace Center

<sup>2</sup>Institut für Werkstoffe, Ruhr-Universität Bochum, Germany

EUROMAT 2009, Glasgow, UK, 7-10 September, 2009





#### Outline

- ✓ Material and microstructure
- Investigation of material behavior
  - Nanoindentation testing
  - ✓ Influence of heterogeneity: scatter in Young's modulus
- ✓ Modeling approach
  - → FE model
  - ✓ Model parameters
- Simulation of nanoindentation
  - Simulation results
- Summary and conclusion



#### **Material and microstructure**

#### TNB alloy: Ti -45AI -5Nb-0.2B (at%)

- Extruded and forged
- HT: 1260°C, 1h, AC + 850°C, 6h,
  FC in calm air
- ➤ Microstructure: Duplex type
- ✓ 20-30% vol. of globular grains

#### **Microstructural heterogeneity**

- ✓ Presence of different phases
- Distribution of grain/colony size and orientations
- ✓ Variable lamellae thickness
- Clusterization of grains/colonies







## Influence of heterogeneity on material and structural behavior on different length scales

#### ➤ Macro scale (specimen, component)

- Scatter in E-modulus
- ✓ Variable plastic strain limit
- ✓ Scatter in fracture strength



- Scatter in E-modulus
- Inhomogeneous local stresses and strains
- ✓ Heterogeneous microcracking







#### Material behavior on meso level: Nanoindentation





#### Poly grains

Lamellar colony

Globular grain



#### **Experimental results: Nanoindentation**



Kabir > EUROMAT 2009, Glasgow, UK, 7-10 September, 2009 > Thursday, 22 October 2009

Folie 6

#### **Representative microstructure for modeling**



Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 7 Kabir > EUROMAT 2009, Glasgow, UK, 7-10 September, 2009 >Thursday, 22 October 2009

#### **Two scale linking – FE2-method**



in der Helmholtz-Gemeinschaft

#### Applied values for elastic constants of single phases



[0001]

{1100}

{1121}

<1126>

{0001}

Experimental values of the phases, after Yoo and Fu [\*], determined for binary Ti-49AI alloy

|                                | E <sub>1111</sub> | E <sub>1122</sub> | E <sub>2222</sub> | E <sub>1133</sub> | E <sub>3333</sub> | E <sub>1212</sub> | E <sub>1313</sub> | E <sub>2323</sub> |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| γ-TiAl                         | 190               | 105               | 190               | 90                | 185               | 50                | 120               | 120               |
| $\alpha_2$ -Ti <sub>3</sub> Al | 221               | 71                | 221               | 85                | 238               | 75                | 69                | 69                |

Obtained values for TNB (Ti-45AI-5Nb-0.2B) from Simulation

- Simulation of tensile tests
- Adjust crystallographic parameters to satisfy the experimental response

|                                    | E <sub>1111</sub> | E <sub>1122</sub> | E <sub>2222</sub> | E <sub>1133</sub> | E <sub>3333</sub> | E <sub>1212</sub> | E <sub>1313</sub> | E <sub>2323</sub> |
|------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| γ-TiAl                             | 161,5             | 89,25             | 161,5             | 76,50             | 157,25            | 42,5              | 102               | 102               |
| α <sub>2</sub> -Ti <sub>3</sub> Al | 187.85            | 60.35             | 187.85            | 72,25             | 202.3             | 63,75             | 58,65             | 58,65             |



 $\alpha_2$  Ti<sub>3</sub>Al

<1120>

#### [\*] ISIJ International, Vol. 31 (1991), No. 10, pp. 1049-1062

#### Model approximation for nanoindention simulation



in der Helmholtz-Gemeinschaft.

#### Calculation of elastic modulus LE, LE22 (Avg: 75%) 250 0.042 0.035 Pile-up 0.027 Simulation curves 0.020 200 0.012 0.004 -0.004 N 150 9 100 9 100 -0.011-0.019-0.027-0.034-0.042-0.050 -0.057 50 -0.065 -0.073Embedded grain -0.081-0.088 0 -0.096 -0.104-0.1110 400 800 1200 1600 -0.119-0.127Indenter depth, h (nm) -0.135-0.142-0.150**Calculation of E-mod:** -0.188**Oliver-Pharr method:** $E_r = 1/2(\pi / A_c)^{1/2}(1/\beta)S_u$ $E = (1 - v^2) / [1 / E_r - (1 - v_d^2) / E_d]$

- E = Young's modulus
- v = poisson's ratio

for diamond:

$$v_{d}$$
 = 0.07, E<sub>d</sub> = 1140 GPa

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- $A_{\rm c}$  = contact area, from ABAQUS
- $\beta$  = shape function Berkovich tip = 1.034

 $S_{II} =$  slope, from F-h plot

#### Simulation results: Influence of grain/colony orientation



| Average - Emod                            | Exp | Sim. |
|-------------------------------------------|-----|------|
| Macro (Tensile test)                      | 146 | 142  |
| Meso grain: Lamellar<br>(nanoindentation) | 182 | 177  |
| Meso grain: Globular<br>(nanoindentation) | 169 | 175  |

Inconsistency: Due to model simplicity a) Thick lamellae b) 4% α2-phases

#### Simulation results at indenter tip: Slip system activation and shear stress evolution



### Cardina Cardina

#### **Summary and Conclusion**

- The nanoindentation experiments showed that the meso scale elastic modulus varies due to microstructural heterogeneity.
- Simulation of nanoindentation showed that
  - Elastic modulus of the colonies and grains vary due to grain orientation
  - The scatter band of elastic modulus due to the influence of colony/grain orientation is +- 25 GPa
  - Activation of slip systems and the evolution of shear stresses in the crystallographic plane are influenced by deformation constraint of the present phases



## Thank you for your attention

