

ExtreMat Neutron Irradiation Experiments

Onne Wouters NRG, Petten The Netherlands

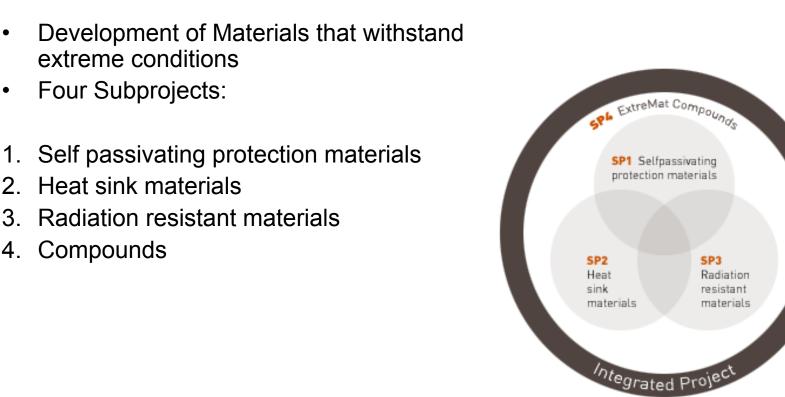
Content

- ExtreMat-IP
- NRG and its High Flux Reactor
- Materials and Applications
- Irradiation Experiment
- Irradiation results
- Post Irradiation experiments
- Outlook

Radiation resistant materials

ExtreMat Integrated Project

4. Compounds


extreme conditions

Four Subprojects:

2. Heat sink materials

٠

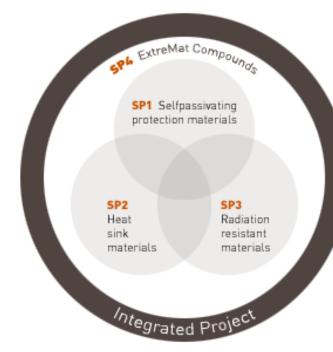
٠

ExtreMat Integrated Project

Self passivating protection materials

- high thermal and mechanical loads
- operation in physico-chemically aggressive environments
- stability under off-normal conditions

Heat sink materials


- stable at high temperatures and large temperature fluctuations
- high thermal conductivity

Radiation resistant materials

- high neutron doses
- dimensional stability

Compounds

- stable interface

For most materials there are nuclear applications

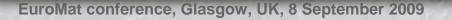
NRG and the HFR

NRG: Nuclear Research and consultancy Group

- The Dutch centre for nuclear expertise
 - Fuel and materials research
 - Production of (medical) isotopes
 - Education and information
- Operates the High Flux Reactor

ExtreMat at NRG

- NRG designs two irradiation experiments
 - ExtreMat-I: low dose, two temperatures: 300°C and 550°C
 - ExtreMat-II: high dose, two temperatures: 600°C and 900°C
- Material from 18 ExtreMat partners from all four Subprojects
- NRG performs large part of pre- and post-irradiation characterisation



The two irradiation experiments are filled with a wide variety of specimen shapes and materials.

- (Doped) graphites
- SiC_fSiC, C_fSiC and C_fC composites
- Tungsten alloys
- CrRe
- ODS steels
- SiC, C and W-fibre reinforced copper
- Tungsted cladded on CuCrZr and on steel
- Bonded SiC_fSiC parts

These materials find applications in both advanced fission and future fusion reactors.

NRG

Nuclear applications

- (Doped) graphites Erosion resistant
 - For fusion first wall and possibly also applications in (V)HTRs
- SiC_fSiC, C_fSiC and C_fC composites
 - Temperature resistant for fusion first wall and divertor
 - In advanced fission: SiC_fSiC as fuel cladding in GCFR
 - As control rod or core restrainer material in (V)HTRs
- Tungsten
 - In fusion reactor as first wall material and in the divertor

Nuclear applications

- ODS steels Creep resistant at high temperatures
 - In fusion as blanket first wall material
 - As fuel cladding in SFR and GCFR
 - In primary circuit in VHTRs
- SiC, C and W-fibre reinforced copper
 - High thermal conductivity combined with good mechanical properties
 - As heat sink material behind fusion reactor's first wall
- Tungsted cladded on CuCrZr and on steel
 - For fusion first wall and divertor
- Bonded SiC_fSiC parts

NZG

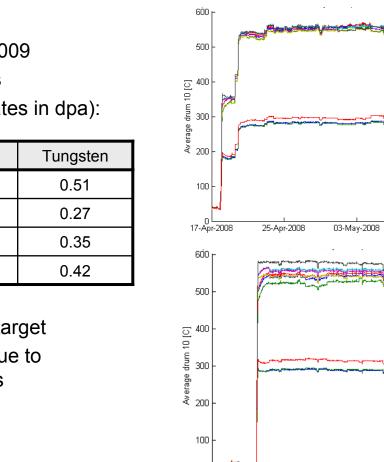
Specimen types

- Tensile bars
- Three point bend beams
- Pills for determination of physical properties
 - Thermal expansion
 - Thermal diffusivity / conductivity
 - Sonic velocity
- Mock-ups of plasma facing wall of a fusion reactor
- TEM discs

Total number of specimens: 493

Irradiation capsule

- Drum based design
- 11 drums in total
- 24 thermocouples, 2 or 3 per drum
- The drums are purged with extra pure Helium gas
- All specimen have to fit a 30 mm by 450 mm cylinder


Irradiation results ExtreMat-I

- Irradiated from Feb. 2008 April 2009
- Total irradiation duration: 6 months
- Total achieved doses (dose estimates in dpa):

	Steel	Graphite	Tungsten
Peak	1.85	1.97	0.51
Drum 1	0.98		0.27
Drum 2	1.2		0.35
Drum 3	1.5		0.42

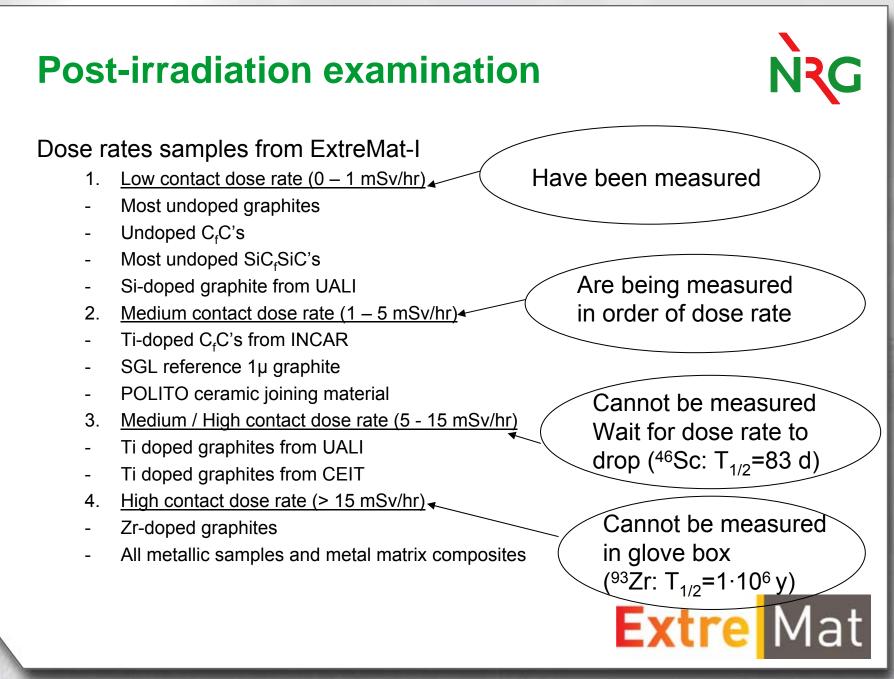
- Temperatures are initially right on target
- Last cycle shows more deviation due to changing properties of the samples

Drum temperatures of ExtreMat-I at start (top) and end (bottom) of irradiation

27-Mar-2009

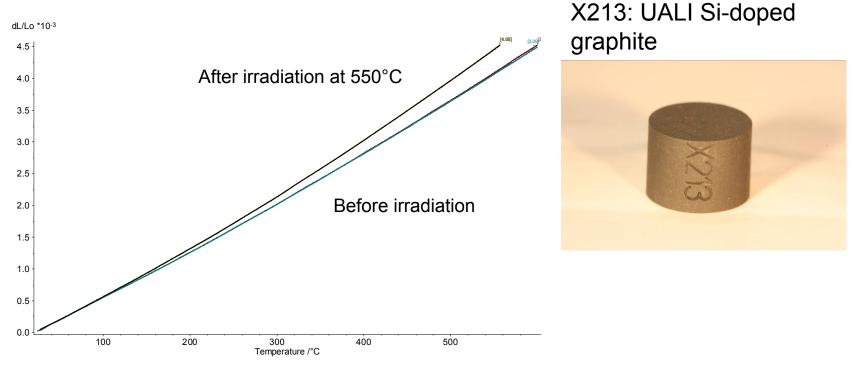
11-May-2008

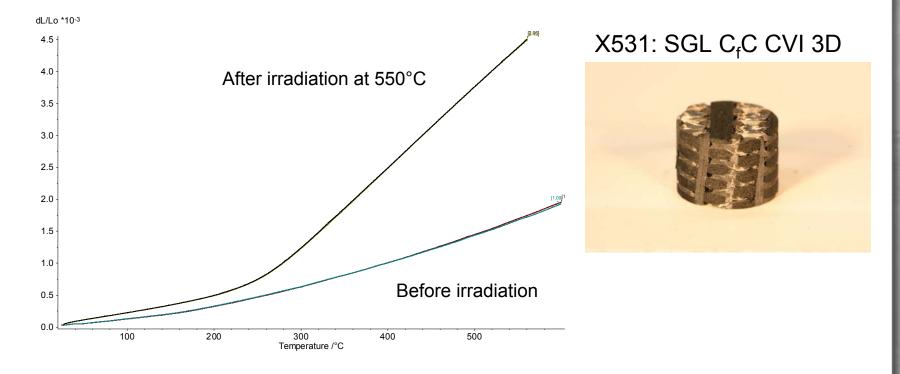
19-May-2008

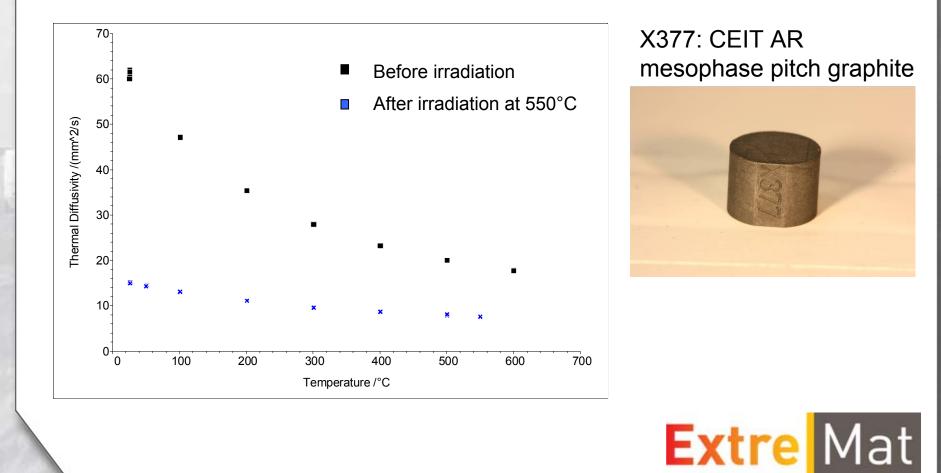

Non-destructive measurements

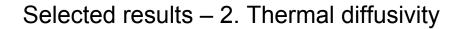
- Photography
- Dimensional change
- Density
- Coefficient of thermal expansion
- Thermal diffusivity (indirect: thermal conductivity)
- Dynamic Young's modulus through sonic velocity determination
- Measurements are performed in glove boxes \rightarrow no shielding for gamma-radiation \rightarrow only possible on low dose rate material

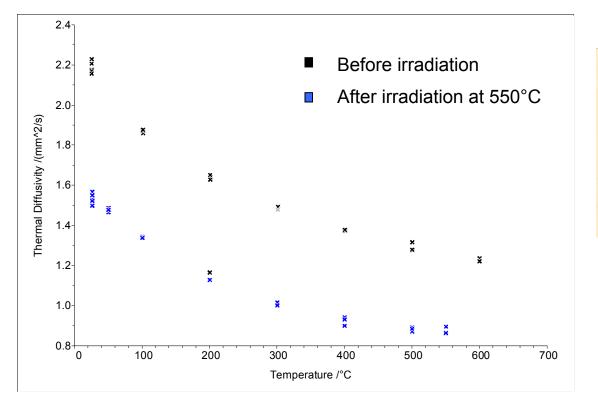
Destructive measurements


- Three point bend testing
- Four point bend testing
- Tensile testing
- Interface strength tests
- Measurements are performed in hot cells \rightarrow sufficient shielding for gamma-radiation \rightarrow All samples can be measured


Selected results – 1. Coefficient of thermal expansion


Selected results – 1. Coefficient of thermal expansion





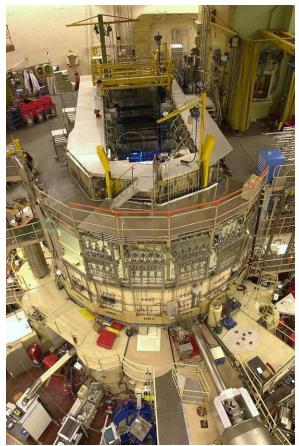
Selected results – 2. Thermal diffusivity

X560: SGL C_fC UD W4-9

Selected results – 3. Dimensional change & Dynamic Young's modulus

			Before irradiation				After irradiation			
Sample T	Туре	Length	Diameter	Density	DYM	Length	Diameter	Density	DYM	
		(mm)	(mm)	(g/cc)	(GPa)	(mm)	(mm)	(g/cc)	(GPa)	
X198	UALI co-pyrolysis compound graphite	6.028	8.184	1.91	12.5	6.029	8.081	1.95	20.3	
X213	UALI Si-doped graphite	6.030	8.119	2.01	21.8	6.029	8.070	2.03	28.1	
X314	CEIT raw SGL graphite	6.067	8.099	1.74	12.8	6.036	8.008	1.79	20.6	
X377	CEIT AR mesophase pitch graphite	6.002	8.089	1.84	9.3	6.003	7.999	1.88	14.1	
X470	SGL reference material 3µ graphite	5.977	8.018	1.85	14.2	5.981	8.000	1.86	24.4	
X483	SGL CfC 2D Pan fiber	5.353	8.029	1.59		5.421	7.709	1.69	5.1	

- Small dimensional changes, samples shrink
- Large increase in Young's modulus


Outlook

Continuation PIE ExtreMat-I

- Mechanical tests
- Medium dose rate material

Extremat-II will be irradiated until Dec. 2009

- 600°C and 900°C
- Higher neutron dose
- PIE results will be available at the end of 2010

