Diamond-based Metal Matrix Composites for Thermal Management made by Liquid Metal Infiltration—Potential and Limits

15. 12. 2008

L.Weber, R. Tavangar

Diamond-based metal matrix composites have been made based on pure Al and eutectic Ag-3Si alloy by gas pressure infiltration into diamond powder beds with the aim to maximize thermal conductivity and to explore the range of coefficient of thermal expansion (CTE) that can be covered. The resulting composites covered roughly the range between 60 and 75 vol-% of diamond content. For the Al-based composites a maximum thermal conductivity at room temperature of 7.6 W/cmK is found while for the Ag-3Si based composites an unprecedented value of 9.7 W/cmK was achieved. The CTE at room temperature varied as a function of the diamond volume fraction between 3.3 and 7.0 ppm/K and 3.1 and 5.7 ppm/K for the Al-based and the Ag-3Si-based composites, respectively. The CTE was further found to vary quite significantly with temperature for the Al-based composites while the variation with temperature was less pronounced for the Ag- 3Si-based composites. The results are compared with prediction by analytical modeling using the differential effective medium scheme for thermal conductivity and the Schapery bounds for the CTE. For the thermal conductivity good agreement is found while for the CTE a transition of the experimental data from Schapery’s upper to Schapery’s lower bound is observed as volume fraction increases. While the thermophysical properties are quite satisfactory, there is a trade-off to be made in these materials between high thermal conductivity and low CTE on the one side and surface quality and machinability on the other.

 

read more
read more